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Abstract. An analytic study is presented of the E
N
e Jahn-Teller (JT) polaron, consisting of a mobile eg

electron linearly coupled to the local eg normal vibrations of a periodic array of octahedral complexes. Due
to the linear coupling, the parity operator K and the angular momentum operator J commute with the
JT part and cause a twofold degeneracy of each JT eigenvalue. This degeneracy is lifted by the anisotropic
hopping term. The Hamiltonian is then mapped onto a new Hilbert space, which is isomorphic to an
eigenspace of J belonging to a fixed angular momentum eigenvalue j > 0. In this representation, the
Hamiltonian depends explicitly on j and decomposes into a Holstein term and a residual JT interaction.
While the ground state of the JT polaron is shown to belong to the sector j = 1/2, the Holstein polaron
is obtained for the “unphysical” value j = 0. The new Hamiltonian is then subjected to a variational
treatment, yielding the dispersion relations and effective masses for both kinds of polarons. The calculated
polaron masses are in remarkably good agreement with recent quantum Monte Carlo data. The possible
relevance of our results to the magnetoresistive manganite perovskites is briefly discussed.

PACS. 71.38.-k Polarons and electron-phonon interactions – 63.20.Pw Localized modes –
72.80.Ga Transition-metal compounds

1 Introduction

The Jahn-Teller (JT) effect describes the interaction of
lattice vibrational modes with orbitally degenerate elec-
tronic states and thus refers to a particular type of
electron-phonon coupling [1]. Although this effect has
proved indispensable for a proper understanding of the
physics of a variety of systems, ranging from paramag-
netic ions in nonmagnetic crystals [2] to structural phase
transitions [3], it is fair to say that its role in condensed-
matter physics has been marginal for a long time.

For nearly a decade, however, the significance of the
JT effect is undergoing a profound change, triggered by
the discovery of superconductivity in the fullerides [4] and
of very large (“colossal”) magnetoresistance (CMR) in the
manganite perovskites [5]. Because of their high symme-
try, both classes of compounds fulfil the requirement for a
JT interaction to occur, and numerous experiments seem
to indicate that this is, in fact, the case. Manifestations
of the JT effect in the fullerides have been reviewed by
O’Brien and Chancey [6], those in the manganites by
Millis [7]. So far, however, there is no consensus as to
the relative importance of the JT coupling in these mate-
rials. In their search of the origin of the CMR effect [5],
e.g., Millis et al. [8] argued that double exchange [9], de-
signed as a mechanism to induce ferromagnetic order in
doped manganites, is not sufficient to account for the re-
sistivity data and suggested that JT polaron formation
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is essential, whereas other authors [10] invoke ferromag-
netic spin polarons to explain the effect. Problems of this
kind could possibly be resolved by means of a detailed
analytic theory of the JT polaron, yielding the (approxi-
mate) ground-state energy together with the correspond-
ing eigenvector. Since the eigenstates of JT systems are
vibronic in nature [1], they may give rise to unexpected
results for expectation values and correlation functions.

As a first step in this direction, we study the JT
polaron of symmetry type E

⊗
e, which is most conve-

niently introduced by recalling some basic properties of
La1−xCaxMnO3, a representative of the manganite fam-
ily [7]. Each unit cell of the crystal contains an octahedral
MnO6 complex and an average number of 4 − x d elec-
trons. Since the Hund’s rule coupling is believed to be
very strong, the spins of all the d electrons are ferromag-
netically aligned. Due to the crystal field produced by the
oxygen ligands (point group Oh) the D state of the free Mn
ion splits into a threefold degenerate t2g and a twofold de-
generate eg level. Three of the electrons go into the tightly
bound t2g orbitals forming a core spin of magnitude 3/2,
while the remaining 1−x d electrons occupy the eg orbitals
and are mobile. To study the formation of the polaron we
start with pure CaMnO3 (x = 1), where only the t2g or-
bitals are filled, and imagine that one additional electron
is injected into the system (e.g., by replacing one Ca ion
by La). The extra electron must go into the eg levels and,
by virtue of symmetry, may couple to the eg normal vi-
brations of the octahedral complex. This type of vibronic



198 The European Physical Journal B

interaction, where both the electron and the vibrational
modes are of eg symmetry, is referred to as E

⊗
e JT

coupling. In addition, the electron is allowed to move in
a band composed of the local eg doublets. The resulting
quasiparticle, consisting of the mobile eg electron and the
concomitant eg distortion of the MnO6 octahedra, is des-
ignated asE

⊗
e JT polaron. A somewhat simpler system,

the E
⊗
b JT polaron, where b denotes a non-degenerate

representation of the tetragonal site group, has already
been treated by Höck, Nickisch and Thomas [11] nearly
two decades ago.

In Section 2 we introduce our model, together with the
angular momentum operator J and the parity operatorK.
Since only linear JT coupling is considered, these opera-
tors commute with the JT Hamiltonian, but not with the
(anisotropic) hopping term. In Section 3 we show that K
generates new fermion operators such that both J and
the JT term assume diagonal form with respect to the
new fermionic basis. The spectrum of J is determined in
Section 4, where we recover the well-known result that all
eigenvalues of J are half-integral. We also show by rather
general arguments that each eigenvalue of the JT Hamil-
tonian is still twofold degenerate. This degeneracy will be
lifted by the hopping term. In Section 5 we construct a rep-
resentation of the original Hamiltonian on a new Hilbert
space, which is isomorphic to an eigenspace of J belonging
to a fixed angular momentum eigenvalue j > 0. The new
Hamiltonian depends explicitly on this quantum number
and decomposes into a quasi-Holstein term and a resid-
ual JT interaction. This is the optimal form, which can
be reached by purely analytic means, and elucidates the
close relationship between the JT and the Holstein po-
laron. While the latter is obtained for the “unphysical”
value j = 0, the ground state of the JT polaron is shown
to belong to the sector j = 1/2. A variational treatment
of the new Hamiltonian is outlined in Section 6, where
also some ground-state properties like the dispersion rela-
tions and effective masses for both kinds of polarons are
presented. Our results are summarized in Section 7.

2 The model Hamiltonian

In the E
⊗
e JT polaron the state of the electron is com-

pletely specified by the vectors |iγ〉, where i denotes the
cell index and γ = x, z the components of the eg doublet
(spin indices are omitted since only a single eg electron is
considered). The wave functions 〈r|ix〉 and 〈r|iz〉 trans-
form like the orbitals dx2−y2 and d3z2−r2 , respectively,
forming a local basis of the Eg representation associated
with each unit cell. The state of the electron may be more
conveniently specified by the operators e†iγ and eiγ , where
e†iγ (eiγ) creates (annihilates) an eg electron in the or-
bital state γ = x or z at lattice site i. Similarly, the eg
distortions of the MnO6 octahedra may be described ei-
ther in terms of the local normal coordinates Qiγ or, more
conveniently, by the bosonic creation and annihilation op-
erators a†iγ and aiγ , respectively, where the indices have
the same meaning as above. The Hamiltonian used for the

description of the E
⊗
e JT polaron reads

H = Ht +Hv +HJT, (1)

where

Ht = −t
∑
ia

ei
† · ha · ei+a (2a)

is the transfer or hopping term to be discussed below,

Hv = ~Ω
∑
i

ai
† · ai (2b)

describes the eg normal vibrations of frequency Ω, while

HJT = g~Ω
∑
i

ei
†
[
(a†ix + aix)σx − (a†iz + aiz)σz

]
ei

(2c)

represents the E
⊗
e JT coupling, where σa (a = x, y, z)

are the Pauli matrices and the coupling strength is ex-
pressed by the dimensionless parameter g. The column
vectors

ei =
(
eiz
eix

)
and ai =

(
aiz
aix

)
, (3)

as well as their associated row vectors ei† and ai†, have
been introduced for convenience and to avoid an accumu-
lation of indices.

The somewhat unusual form of the hopping term (2a),
where the summation over a runs over the six nearest
neighbors of site i, originates from the orbital degeneracy
of the electronic states. In orbitally degenerate systems the
transfer of electrons between neighboring sites depends on
the orientation of the orbitals and the direction of the
transfer. The matrix elements hγγ

′

a of the matrices ha are
entirely determined by symmetry. Their numerical values
along the three cubic axes are tabulated in reference [12],
where the interatomic matrix element Vddσ is related to
our hopping integral t. In the electronic basis defined by
the vector ei in equations (3), the matrices ha take the
explicit form

h±x = (2σ0 −
√

3σx − σz)/4,
h±y = (2σ0 +

√
3σx − σz)/4, (4)

h±z = (σ0 + σz)/2,

where σ0 denotes the 2× 2 unit matrix.
In equation (2c) we have restricted ourselves to linear

JT coupling, adopted by the majority of authors [13,14].
Moreover, our model does not contain the intersite cou-
pling of the normal modes, which one intuitively ex-
pects since oxygens are shared between adjacent MnO6

octahedra. These coupling terms will give rise to opti-
cal phonon branches and, as was recently pointed out by
Hotta et al. [15] and Popovic and Satpathy [16], to col-
lective effects such as orbital ordering. Other terms like,
e.g., the Hund’s rule coupling should also be included in
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a more rigorous treatment. Hence, our model is probably
too simplistic for a fair description of the manganites; we
hope to include the neglected terms in future work.

SinceH is invariant under lattice translations, the total
crystal momentum P = K + Q is a conserved quantity.
Here the operators K =

∑
k kek

† ·ek and Q =
∑

q qaq
† ·

aq denote the crystal momenta of the electron and the
eg vibrational modes, respectively, where ek and aq are
the Fourier transforms of ei and ai. In addition to P,
there are operators which commute with Hv and HJT ,
but not with the hopping term (unless Ht is assumed to
be isotropic). Although these operators are not strictly
conserved, they often greatly facilitate the diagonalization
ofH, as we shall see below. There are two operators of this
kind which prove particularly useful:
(i) the parity operator

K = GR, (5a)

where

G = exp

(
iπ
∑
i

ai
† · ai

)
(5b)

and

R = exp

[
i(π/2)

∑
i

ei
† · (σy − σ0) · ei

]
; (5c)

(ii) the angular momentum operator

J =M− 1
2

∑
i

ei
† · σy · ei, (6a)

where

M =
∑
i

ai
† · σy · ai (6b)

is referred to as vibrational angular momentum. The spec-
tral properties of these operators will be discussed in the
following sections. Here it suffices to mention that quan-
tities similar to K and J also play an important role in
isolated E

⊗
e JT centers, provided the JT coupling is

linear [17]. In such systems the only eigenvalues of K are
1 and −1, whereas those of J range over all half-odd in-
tegers. The most important properties of the operator K
may be summarized by the equations

K†eiK = σy · ei, K†aiK = −ai, (7)

whose derivation rests on the well-known commutator
expansion

eSAe−S = A+ [S,A] + (2!)−1[S, [S,A]] + · · ·

Using (7) we see that both Hv +HJT and J are left in-
variant by K, i.e., Hv +HJT , K and J form a complete
set of commuting operators:

[Hv +HJT ,K] = [Hv +HJT ,J ] = [K,J ] = 0. (8)

3 Generation of new fermion operators

In this section we shall exploit the properties of the parity
operator K to generate new fermionic creation and an-
nihilation operators such that HJT and J take diagonal
form with respect to these operators. To this end we need
another property of K, which reads

K2 = 1 (9)

and readily follows from equations (7) and the relation
(σa)2 = σ0 valid for all Pauli matrices. Hence, as in an
isolated JT center, the only eigenvalues of K are κ = ±1.
Moreover, since K is also unitary, we have the additional
relations K = K−1 = K†.

As the next step, we need the projection operator Pκ
for selecting the subspace associated with the eigenvalue κ
of K. According to Löwdin [18], Pκ is given by the expres-
sion

Pκ =
1
2

(1 + κK) (κ = ±1), (10)

which, apart from being Hermitian, has the properties∑
κ

Pκ = 1, (11a)

PκPκ′ = δκκ′Pκ. (11b)

We also have the obvious relation KPκ = κPκ, implying
that the subspace projected out by Pκ is an eigenspace
of K to the eigenvalue κ. Property (11a) allows us to de-
compose the Hamiltonian and the angular momentum op-
erator J into components acting on the eigenspaces of K
as follows

H =
∑
κκ′

PκHtPκ′ +Hv +
∑
κ

PκHJTPκ, (12a)

J =
∑
κ

PκJPκ, (12b)

where we have used equation (11b) and the fact that Hv,
HJT , and J commute with Pκ. Since the hopping term
does not commute with K, the eigenspaces of the latter
are mixed by Ht, as was to be expected.

To obtain equations (12) in explicit form, we need to
calculate the operators eiPκ. Using (7) and (10) we find

eiPκ =
1
2

(σ0 + κσyK) · ei =
1
2

(
eiz − iκKeix
eix + iκKeiz

)
, (13)

and we shall now prove that the products Keiγ (γ = x, z)
on the right side of equation (13) may be replaced by Geiγ ,
where G is defined by equation (5b). To show this, let |Ψ〉
be an arbitrary vector of the underlying single-particle
Hilbert space,

|Ψ〉 =
∑
iγ

Ψiγe
†
iγ |0〉, (14)
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where Ψiγ are pure functions of the Bose operators aiγ ,
a†iγ and |0〉 denotes the common vacuum for all particles.
If Keiγ is now applied to |Ψ〉 and use is made of the fact
that R of equation (5c) commutes with Ψiγ (γ = x, z), the
result is

Keiγ |Ψ〉 = KΨiγ |0〉 = GΨiγ |0〉 = Geiγ |Ψ〉·
Hence, Keiγ = Geiγ on the entire Hilbert space, which
proves our claim. Expression (13) may thus be rewritten as

eiPκ =
1
2

(
eiz − iκGeix
eix + iκGeiz

)
= uκdiκ, (15a)

where

uκ =
1√
2

(
1
iκG

)
(15b)

is a normalized vector (i.e., uκ† · uκ = 1), while the
quantities

diκ =
1√
2

(eiz − iκGeix) (15c)

behave like ordinary fermion operators, i.e.,

[diκ, d
†
jκ′ ]+ = δijδκκ′ , [diκ, djκ′ ]+ = 0. (16)

However, due to the presence of the operator G in equa-
tion (15c), the diκ, d †iκ cease to commute with the Bose
operators aiγ and a†iγ , but continue to commute with
quadratic forms like G and the vibrational angular mo-
mentum M of equation (6b).

With the help of equations (15), the various parts of
the Hamiltonian (12a) may now be expressed in terms of
the new fermion operators diκ and d †iκ (κ = ±1). We start
with the hopping term Ht, which is transformed into

Ht = −t
∑
ia

∑
κκ′

d †iκτ
κκ′

a di+a,κ′ , (17a)

τκκ
′

a = uκ
† · ha · uκ′ , (17b)

where the matrices ha are given by equations (4). In the
basis defined by the vector di =

(
di+
di−

)
, equations (17) may

also be written as

Ht = −t
∑
ia

di
† · τ a · di+a, (18a)

where the new hopping matrices τa read

τ±x = (2σ0 − σx −
√

3Gσy)/4,

τ±y = (2σ0 − σx +
√

3Gσy)/4, (18b)

τ±z = (σ0 + σx)/2,

being now explicit functions of the operator G. The vibra-
tional part Hv remains unchanged, while the JT coupling
takes the form

HJT = g~Ω
∑
iκ

d †iκ[iκ(a†ix + aix)G − (a†iz + aiz)]diκ.

(19)

In deriving this result we have used the relations aiγuκ =
u−κaiγ , uκ† · σx · u−κ = −iκG, and uκ† · σz · u−κ = 1.
Finally, the angular momentum operator J of equa-
tion (12b) is obtained as

J =M− (G/2)
∑
iκ

κd †iκdiκ, (20a)

and we see that HJT and J are now diagonal with respect
to the new fermion operators. The vibrational part of J
is, however, still nondiagonal. The diagonalization of M
is readily accomplished by means of the substitutions

aiz →
1√
2

(aiz + aix),

aix →
−i√

2
(aiz − aix),

which leave Ht and Hv invariant, while M is brought to
the diagonal form

M =
∑
i

(a†ixaix − a
†
izaiz) =

∑
i

Mi. (20b)

The JT coupling is transformed into the expression

HJT = −
√

2g~Ω
∑
iκ

d †iκ(aixΠκ + aizΠ−κ + h.c.)diκ,

(21)

where the new projection operators

Πκ =
1
2

(1 + κG) (κ = ±1) (22)

have been introduced. For later purposes we need the
properties

Πκaiγ = aiγΠ−κ, (23a)
ΠκΠκ′ = δκκ′Πκ, (23b)

Πκ +Π−κ = 1, (23c)
Πκ −Π−κ = κG, (23d)

which follow immediately from definition (22). Before we
set out to develop strategies for dealing with the compli-
cated vibrational terms in HJT , we shall first derive the
spectrum of J and investigate the possible symmetries
and degeneracies of the JT Hamiltonian.

4 Symmetries and degeneracies

In isolated JT centers there often exist “hidden” symme-
tries giving rise to unexpected degeneracies of the energy
levels. In the linearly coupled E

⊗
e JT center, e.g., all

eigenvalues are twofold degenerate, and higher-order cou-
pling terms are necessary to (partially) remove the de-
generacy [1]. This section is devoted to a study of these
degeneracies in JT crystals like the manganites.
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To investigate the possible symmetries of our system,
we first need the spectrum of the angular momentum op-
erator J , equations (20). Since J , K, and Hv commute
with each other, these operators possess common eigen-
states. The latter are of the form

|Ψ 0
njκ〉 =

∑
i

Ciκd
†
iκ

∏
i

|ni,mi〉 (κ = ±1), (24a)

where Ciκ are coefficients and the product extends over
the local eigenstates of the isotropic oscillator in two di-
mensions [19]:

|ni,mi〉 =
(a†ix)(ni+mi)/2(a†iz)

(ni−mi)/2√(
ni+mi

2

)
!
(
ni−mi

2

)
!
|0〉, (24b)

ni = 0, 1, 2, · · · ; mi = ni, ni − 2, · · · ,−ni. (24c)

In fact, a simple calculation shows that |Ψ 0
njκ〉 is an eigen-

state of K, J , and Hv with the respective eigenvalues κ,
jκ, and E 0

njκ, where

E 0
njκ = n~Ω, jκ = m− κ

2
(−1)n, (25a)

n =
∑
i

ni, m =
∑
i

mi. (25b)

There are many other linearly independent eigenvectors
of K, J , and Hv belonging to the same eigenvalues: all
vectors of the form (24a), whose quantum numbers ni and
mi satisfy the constraints (24c) and (25b), are also eigen-
states with the required properties. Together they span a
vector space U0

j , and we see that the energies E 0
njκ are

highly degenerate [20].
For a single site we have the relation mi = ni − 2pi

(pi = 0, 1, · · · , ni) which, after summation over all cells,
becomes m = n − 2p (p = 0, 1, · · · , n). Thus, for a given
n, the quantum number m may take the n + 1 integral
values m = n, n−2, · · · ,−n, whence we conclude that the
angular momentum quantum numbers jκ must all be half-
integral, as in an isolated E

⊗
e JT center with linear cou-

pling [1]. A more detailed analysis of jκ, equation (25a),
requires a distinction between even and odd n (n and m
always have the same parity, both being either even or
odd). It is not difficult to verify that, for fixed κ, both
cases yield the same eigenvalues jκ so that we may re-
strict ourselves to even m (n). The angular momentum
quantum numbers may thus also be written as

jκ = m− κ/2 (m = 0,±2,±4, · · · )

or, explicitly:

jκ =
{
· · · ,−5/2,−1/2, 3/2, 7/2, · · · κ = 1
· · · ,−7/2,−3/2, 1/2, 5/2, · · · κ = −1. (26)

We now set out to examine more closely the structure
of J and HJT which, for the present purpose, are writ-
ten as J =

∑
κ J (κ) and HJT =

∑
κH

(κ)
JT . A glance at

equations (20) and (21) then reveals that the substitution
diκ → di,−κ, combined with the interchange aix ↔ aiz
(these operations correspond to canonical transformations
and, hence, do not affect the eigenvalues), has the effect
that H(κ)

JT → H
(−κ)
JT and J (κ) → −J (−κ). Denoting the

eigenvalues of H(κ)
JT and J (κ) by Enjκ and jκ, respectively,

and the common eigenvectors of these operators by |Ψnjκ〉,
we may thus draw the following conclusions:
1. H(+)

JT and H(−)
JT have the same eigenvalues which must,

therefore, be independent of κ: Enjκ = Enj . Since the cor-
responding eigenvectors |Ψnj+〉 and |Ψnj−〉 are orthogonal
by virtue of equation (11b), each eigenvalue Enj of HJT
is necessarily twofold degenerate.
2. The spectra of J (+) and J (−) have the property that
to any positive eigenvalue j+ of J (+) there is always a
negative eigenvalue j− = −j+ of J (−) and vice versa.
This property is most clearly reflected by equation (26).
Since the eigenvalues of HJT are independent of κ, they
can only depend on j ≡ |jκ| = 1/2, 3/2, 5/2, · · ·
Thus, we see that the huge degeneracy of the eigenvalues
E 0
njκ of Hv (see Ref. [20]) is nearly completely lifted by

the JT Hamiltonian. The remaining twofold degeneracy
of HJT , which is of the same origin as that in the linearly
coupled E

⊗
e JT center, will be removed by the hopping

term Ht (apart from accidental degeneracy).
Only relatively few of the vectors contained in U0

j are
simultaneous eigenstates of J and HJT . To find these
eigenvectors, we shall take advantage of the existence of
a simple operator C, which also commutes with J and is
of help to select the proper candidates. This operator will
be shown in Section 5 to emerge from the JT Hamiltonian
and reads

C =
∑
iκ

d †iκ(1− κGMi)diκ. (27)

There are, in fact, two orthogonal sets of eigenstates both
belonging to the same quantum number j, but to different
eigenvalues of C. For positive j the two sets are represented
by the vectors (similar vectors have been constructed in
Ref. [21])

|Ψ+
njκ〉 =

∑
i

∞∑
ni=0

C+
iκ(ni)d

†
iκ|m+ 2ni,m〉

∏
l6=i
|0l, 0l〉,

(28a)

|Ψ−njκ〉=
∑
i

∞∑
ni=0

C−iκ(ni)d
†
iκ|m+2ni+1,m+1〉

∏
l6=i
|0l, 0l〉,

(28b)

where m is the same for all i and may assume the values

m = j − 1/2 = 0, 1, 2, · · · (28c)

It is then straightforward to verify the eigenvalue
equations

J |Ψ±njκ〉 = j|Ψ±njκ〉, (29a)

C|Ψ±njκ〉 = (1/2± j)|Ψ±njκ〉, (29b)
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whose validity requires that

κ = −(−1)m = (−1)j+1/2. (29c)

Common eigenstates of J and C for negative j also exist,
but are not needed here.

Hence, the vectors |Ψ±njκ〉 are common eigenstates of J
and C. Physically they represent polaronic states, where
the electron is accompanied by an on-site distortion (vi-
brational excitation) of the molecular complex, all other
complexes not coinciding with the location of the elec-
tron being left in their vibrational ground states. All vec-
tors (28a), where m is given and κ is fixed by equa-
tion (29c), form a subspace U+

j , while those obtained from
|Ψ−njκ〉 span a subspace U−j , which is orthogonal to U+

j .
The direct sum of these spaces will be denoted as Uj to
remind us that this is an eigenspace of J to the eigenvalue
j = m+1/2 > 0. Since this is the most general eigenspace,
which is compatible with the existence of the operator C,
the simultaneous eigenvectors |Ψnjκ〉 of HJT and J are
necessarily all contained in Uj .

5 Representation of H for fixed quantum
number j

Our main goal in this section is to construct a representa-
tion of the Hamiltonian on a subspace Vj , which is defined
to be isomorphic to the space Uj introduced at the end of
the preceding section. We start with the JT term, whose
representation rests on the operators

A =
√

2
∑
iκ

d †iκ(aixΠκ + aizΠ−κ)diκ, (30a)

A† =
√

2
∑
iκ

d †iκ(a†ixΠ−κ + a†izΠκ)diκ, (30b)

allowing the JT Hamiltonian (21) to be written in the
simple form

HJT = −g~Ω(A+A†). (31)

The merits of this seemingly trivial reformulation will be-
come obvious later on. As the next step, we calculate the
products AA† and A†A. Using properties (23a) and (23b)
we find the expressions

AA† = 2
∑
iκ

d †iκ(1 + a†ixaixΠ−κ + a†izaizΠκ)diκ, (32a)

A†A = 2
∑
iκ

d †iκ(a†ixaixΠκ + a†izaizΠ−κ)diκ, (32b)

which enable us to set up the commutator [A,A† ] and
the anticommutator [A,A† ]+. Using properties (23c)
and (23d) we obtain

1
2

[A,A† ] =
∑
iκ

d †iκ(1− κGMi)diκ ≡ C, (33a)

1
2

[A,A† ]+ =
∑
iκ

d †iκ(1 + ai† · ai)diκ ≡ N , (33b)

where C = 1
2 [A,A† ] is the operator (27), whose eigenvalue

problem is given by equation (29b). The result may be
restated as follows: on the subspace U+

j the operator C
reduces to a positive integer and takes the form

1
2

[A,A† ] = C = m+ 1 = j + 1/2 (m ≥ 0), (34)

whereas on U−j it reduces to the number 1/2 − j, which
is negative for all j > 1/2. To appreciate this result, we
now investigate the anticommutator N , equation (33b).
First of all one realizes that N is a positive operator. This
property, together with the identity

N = A†A+ C, (35a)

imposes a constraint on C requiring that this must also
be a positive operator. The only way to guarantee that C
and, hence, N are positive for all j ≥ 1/2 is to restrict the
commutator to the subspace U+

j as in equation (34).
Particularly interesting are the commutators [N ,A ]

and [N ,A† ], since they agree with those of ordinary Bose
operators [22]. In fact, using equations (30) and (33b) one
obtains

[N ,A ] = −A, [N ,A† ] = A†. (35b)

We also need to express Hv in terms of the operators A
and A†. To this end we calculate the expectation value
of N in the state |iκ〉 = d †iκ|0〉e, where |0〉e denotes the
electronic vacuum. The result is 〈iκ|N |iκ〉 = 1 + ai

† · ai
which, after summation over all sites, yields

Hv = ~Ω
∑
i

(〈iκ|N |iκ〉 − 1). (36)

We are now in a position to construct the desired rep-
resentation of the JT Hamiltonian, as defined at the begin-
ning of this section. Our idea is to map the Hilbert space
Uj onto a new space Vj, isomorphic to Uj , and to construct
operators on the new space satisfying the same relations
as A and A† on Uj (this procedure is closely related to
that employed in the bosonization of spin operators). The
new space Vj is spanned by all vectors of the form

|Φ+
njκ) =

∑
i

∞∑
ni=0

C+
iκ(ni)c

†
iκ

(b †i )2ni√
(2ni)!

|0), (37a)

|Φ−njκ) =
∑
i

∞∑
ni=0

C−iκ(ni)c
†
iκ

(b †i )2ni+1√
(2ni + 1)!

|0), (37b)

where b †i and c†iκ create new bosons and fermions, respec-
tively, and |0) is the common vacuum of the new particles.
The new fermion operators are similarly defined as our
previous diκ of equation (15c):

ciκ =
1√
2

(eiz − iκGeix), (38a)

G = exp

(
iπ
∑
i

b †i bi

)
. (38b)
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The required isomorphism between Uj and Vj is achieved
by the mapping prescription

|Ψ±njκ〉 ↔ |Φ±njκ), (39)

which obviously establishes a one-to-one correspondence
between all vectors of Uj and those of Vj . As in our con-
struction of the space Uj , the new space may also be con-
ceived as the direct sum of two orthogonal subspaces,
V+
j and V−j , spanned by all vectors of the form (37a)

and (37b), respectively. The quantum number κ in equa-
tions (37) may be assigned the value (29c), but we shall
see below that the results are independent of this choice.

On the new space Vj we now define the operator

Aj =
∑
iκ

c†iκA
(j)
i biciκ, (40a)

where A(j)
i is self-adjoint and explicitly dependent on the

quantum number j:

A
(j)
i = P− +

(
1 +

2j

b †i bi + 1

)1/2

P+, (40b)

P± =
1
2

(1±G). (40c)

The operators P±, the analogues of our previous Πκ, sat-
isfy a set of relations differing from equations (23) only in
notation (we have, e.g., that P±bi = biP∓). We now set
out to prove that Aj and A†j satisfy the same algebraic re-
lations on Vj as A and A† on the space Uj (another proof
of the equivalence of the operators A and Aj in terms of
their matrix elements is given in Appendix A). To this
end we start by calculating the products AjA

†
j and A†jAj .

Using the well-known relation F (b †i bi)bi = biF (b †i bi − 1),
we find that

AjA
†
j =

∑
iκ

c†iκ(b †i bi + 2jP+ + 1)ciκ, (41a)

A†jAj =
∑
iκ

c†iκ(b †i bi + 2jP−)ciκ. (41b)

By means of these relations, we may now evaluate the
commutator [Aj , A

†
j ] and the anticommutator [Aj , A

†
j ]+.

A simple calculation gives

1
2

[Aj , A
†
j ] =

∑
iκ

c†iκ(1/2 + jG)ciκ ≡ Cj , (42a)

1
2

[Aj , A
†
j ]+ =

∑
iκ

c†iκ(b †i bi + j + 1/2)ciκ ≡ Nj , (42b)

where Cj and Nj denote the analogues of our previous
operators C and N .

If our formalism is to be meaningful, we expect the
commutators [Nj, Aj ] and [Nj, A

†
j ] to be the same as in

equations (35b), differing from the latter only in notation.

This is in fact the case, for a straightforward calculation
based on equations (40a) and (42b) shows that

[Nj , Aj ] = −Aj, [Nj , A
†
j ] = A†j , (43)

and we recover the Bose-like commutation rela-
tions (35b) [22]. It still remains to be verified that the
commutator (42a) agrees with that of equation (34). This
is readily shown and follows from the observation that
on V+

j the operator G acts like the unit operator, while
on V−j it has the eigenvalue −1. Moreover, since Nj is
again a positive operator, Cj must also be positive by the
same arguments as those used in conjunction with equa-
tion (34). Hence, on the allowed subspace V+

j the commu-
tator reduces to the positive integer

1
2

[Aj , A
†
j ] = Cj = j + 1/2, (44)

exactly like C on U+
j (see Eq. (34)). Thus, we have shown

that the operators Aj , A
†
j , Nj and A, A†, N are defined

on isomorphic Hilbert spaces and satisfy the same alge-
bra. The two sets are, therefore, physically indistinguish-
able from each other. In retrospect we realize that rela-
tions (43) and (44) do not depend on the sign of κ in
equations (37). This independence is important, since it
restores the twofold degeneracy of the eigenvalues of the
JT Hamiltonian.

The equivalence of the sets {Aj , A†j , Nj}
and {A, A†, N} will now be exploited to construct
the desired representation of the Hamiltonian on the
space Vj . Consider first the vibrational term Hv, whose
representation on Uj is given by equation (36). To
represent Hv on Vj , we start by using the correspondence
N ∼ Nj and diκ ∼ ciκ. Thereby the matrix element
〈iκ|N |iκ〉 is mapped on (iκ|Nj|iκ), where |iκ) = c†iκ|0)e
and |0)e denotes the electronic vacuum in Vj. The
representation of Hv on Vj is then obtained as

H(j)
v /(~Ω) =

∑
i

[(iκ|Nj |iκ)− 1] =
∑
i

(b †i bi + j − 1/2),

(45)

where equation (42b) has been used. To find the represen-
tation of the JT term, we must go back to equation (31)
and exploit the correspondence A ∼ Aj . In this way the
representation of HJT on Vj is found to be given by the
expression

H
(j)
JT/(~Ω) = −g(Aj +A†j) = −g

∑
iκ

c†iκ(A(j)
i bi + h.c.)ciκ,

(46)

where use has been made of equation (40a). For later pur-
poses it proves more convenient to rewriteH(j)

JT in the form

H
(j)
JT = H

(0)
JT − g~Ω

∑
iκ

c†iκ(P+B
(j)
i bi + h.c.)ciκ, (47)
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where

H
(0)
JT = −g~Ω

∑
iκ

c†iκ(b †i + bi)ciκ (48a)

and

B
(j)
i =

(
1 +

2j

b †i bi + 1

)1/2

− 1. (48b)

We mention in passing that expressions quite similar to
those in equations (45, 47, 48) have been derived for the
isolated E

⊗
e JT center by means of a rather different

approach [23]. In the unphysical limit j = 0 the JT inter-
action reduces to the displaced-oscillator term H

(0)
JT , since

B
(j)
i = 0 in this case [22]. The hopping term deserves some

comment.
In Section 2 it was pointed out that Ht does not, in

general, commute with J implying that Ht may induce
transitions between subspaces belonging to different eigen-
values j of J . However, from the vibrational term (45) it
follows that the ground state belongs to j = 1/2 and is
separated from the state with j = 3/2 by the energyN~Ω,
which tends to infinity in the thermodynamic limit. This
gives rise to a kind of selection rule, allowing transitions
only within the ground-state manifold, and we may, there-
fore, regardHt as being restricted to the subspace Uj=1/2.
Hence, its representation on Vj=1/2 takes the form

Ht = −t
∑
ia

ci
† · ta · ci+a, (49)

where the matrices ta differ from the τa in equations (18b)
only in the replacement of G by G.

Putting together our findings, the representation of the
total Hamiltonian can now be easily written down. For the
ground state (j = 1/2), the result may be recast into the
form

H = HQH − g~Ω
∑
iκ

c†iκ

(
P+B

(j)
i bi + h.c.

)
ciκ, (50a)

where B(j)
i (j = 1/2) is defined by equation (48b) and

HQH = −t
∑
ia

ci
† · ta · ci+a + ~Ω

∑
i

b †i bi

− g~Ω
∑
iκ

c†iκ

(
b †i + bi

)
ciκ (50b)

will be referred to as quasi-Holstein model. Although HQH

and the standard Holstein model [24] have the same for-
mal appearance, they differ from each other in two re-
spects. First of all they differ in the hopping term, which
is isotropic in the standard model and anisotropic in our
case. A more subtle difference lies in the properties of the
fermion operators: while those of the standard model com-
mute with the boson operators, this is not the case with
the ciκ, c

†
iκ in equations (50). The peculiar behavior of our

fermion operators will, however, not entail any problems
in the further analysis.

6 Variational treatment

The structure of the vibrational term (45) led us to con-
clude that the ground state of the E

⊗
e JT polaron be-

longs to j = 1/2 and thus agrees with the well-known fact
that the lowest state of the isolated E

⊗
e JT center be-

longs to the same quantum number [1]. Subsequently our
Hamiltonian H of equations (50) will be subjected to a
variational treatment, yielding the (approximate) ground-
state energy and the corresponding eigenvector for both
the JT and the Holstein polaron. From equations (50) we
see that the quasi-Holstein model results for j = 0, while
the JT case is obtained for j = 1/2, allowing both types
of polarons to be treated in a unified way. A substantial
simplification of the Hamiltonian may be achieved by an
expansion of the square root in equation (48b) which, for
j = 1/2, converges for all eigenvalues of b †i bi. Keeping only
terms linear in j, the expansion of B(j)

i becomes

B
(j)
i = j

(
b †i bi + 1

)−1

+O(j2). (51)

Since B(j)
i vanishes for j = 0, we expect equation (51) to

be reasonable for j = 1/2. Indeed, for the isolated E
⊗
e

JT center this turns out to be an excellent approxima-
tion [23], and we shall use it in the subsequent analysis.

One of the main ingredients of our treatment is a
unitary operator (Lee-Low-Pines or Jost transformation)
having the property that the transformed Hamiltonian as-
sumes diagonal form with respect to the fermion momenta.
This transformation, which has already proved its utility
in various other polaron problems [25], has the form

U = exp

(
−i
∑
iκ

c†iκQ ·Riciκ

)
=
∑
iκ

c†iκUiciκ, (52)

where the last equality only holds on the single-particle
Hilbert space. The operator

Ui = exp(−iQ ·Ri), (53a)

where

Q =
∑
q

q b †qbq (53b)

denotes the crystal momentum of the boson field, com-
mutes with all ciκ and is a translation operator for the
Bose particles:

U †i blUi = bl−i. (53c)

To better understand why the Jost transformation
leads to a partial diagonalization of the Hamiltonian in
momentum space, we recall from Section 2 that the total
crystal momentum P = K + Q, where K =

∑
k k ck

† · ck

denotes the fermion momentum and Q is given by equa-
tion (53b), is a conserved quantity. Using the alternative
form U =

∑
k ck

† · ck+Q, one readily establishes the re-
lation U †PU = K, showing that in the transformed sys-
tem K plays the role of the total crystal momentum. This
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necessarily implies that the transformed Hamiltonian be-
comes diagonal in the fermion momenta k, the eigenvalues
of K, whereas the indices κ remain unaffected.

To obtain the transformed Hamiltonian U †HU , we use
the last equality in equation (52) and property (53c). The
calculation is straightforward and leads to the result

U †HU = −t
∑
ia

Uaci
† · ta · ci+a + ~Ω

∑
i

b †i bi

− g~Ω
∑
iκ

c†iκ[(1 + P+B
(j)
0 )b0 + h.c.]ciκ, (54)

where b0 ≡ bi=0 and B
(j)
0 is given by equation (51). Af-

ter Fourier transformation of the fermion operators the
Hamiltonian assumes the expected form

U †HU =
∑
k

∑
κκ′

c†kκH
κκ′

k ckκ′ , (55a)

where

Hκκ′

k = −T κκ′k−Q + δκκ′~Ω
{∑

i

b †i bi

− g[(1 + P+B
(j)
0 )b0 + h.c.]

}
(55b)

and

T κκ
′

k−Q = t
∑
a

tκκ
′

a exp[i(k−Q) ·Ra]. (55c)

Our variational treatment is based on the displacement
transformation

V =
∑
kκ

c†kκVkckκ, (56a)

defined on the single-particle Hilbert space, where the op-
erator [26]

Vk = exp

[
vk√
N

∑
q

(b †q − bq)

]
(56b)

displaces the bq according to the familiar formula
V †k bqVk = bq + vk/

√
N (N denotes the total number of

sites). The unknown parameters vk will be determined
from the variational principle. The Hamiltonian then ac-
quires the form

H̃ ≡ (UV )†H(UV ) =
∑
k

∑
κκ′

c†kκV
†
kH

κκ′

k Vkckκ′ , (57)

where Hκκ′

k is given by equation (55b). Our further strat-
egy may now be outlined as follows: as the first step, we
introduce new fermion operators fkκ, f†kκ by means of the
relation

f†kκ|0) = (ck
† · Lk)κ|0) =

∑
κ′

Lκ
′κ

k c†kκ′ |0), (58)

where Lk is a unitary 2×2 matrix, which will be specified
below. In terms of the new fermionic basis the Hamilto-
nian (57) takes the form

H̃ =
∑
k

∑
κκ′

f†kκ(L†kV
†
k HkVkLk)κκ′fkκ′ (59)

and possesses the matrix elements

(0|fkκH̃f
†
kκ′ |0) = (L†kMkLk)κκ′ =

∑
λλ′

(Lλκk )∗Mλλ′

k Lλ
′κ′

k ,

(60a)

where the expectation values

Mλλ′

k = (0|V †kHλλ′

k Vk|0) (λ, λ′ = ±1) (60b)

will be functionals of vk. The matrix Lk is now fixed by
the requirement

(L†kMkLk)κκ′ = Eκ(k)δκκ′ , (61)

which gives rise to two energy bands Eκ(k) (κ = ±1).
The variational parameters vk are then obtained from
the condition δE−(k)/δvk = 0, where E−(k) denotes the
band with the lowest energy. The approximate, normalized
ground-state eigenvector has the form

|Φk−) = UV f †k−|0) = Zk

∑
iκ

∞∑
ni=0

Ciκ,k(ni)c
†
iκ

(b †i )ni√
ni!
|0),

(62a)

where Zk = N−1/2 exp(−v2
k/2) and the coefficients are

given by

Ciκ,k(ni) =
(vk)ni√
ni!

Lκ−k exp(ik ·Ri). (62b)

Thus, our first task is to evaluate the matrix ele-
ments (60b). A somewhat lengthy, but straightforward
calculation gives the following results

M++
k = −tk

z∑
a=x

cos ka + ~Ωvk(vk − 2g)

−2jg~Ωv−1
k exp(−v2

k) sinh v2
k, (63a)

M+−
k = −tk

(
e2iπ/3 cos kx + e−2iπ/3 cos ky + cos kz

)
,

(63b)
M−−k = M++

k , M−+
k = (M+−

k )∗, (63c)

where j = 0 for the quasi-Holstein model, j = 1/2 for the
E
⊗
e JT polaron, and

tk = t exp(−v2
k). (64)

Having obtained the matrix Mk, we readily find its eigen-
values Eκ(k),

Eκ(k) = −tkEκ(k) + ~Ωvk(vk − 2g)

− 2jg~Ωv−1
k exp(−v2

k) sinh v2
k, (65)
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where the quantities

Eκ(k) = ε0(k) − κ
√
ε21(k) + ε22(k) (κ = ±1) (66)

denote the two eg bands in the absence of the JT cou-
pling [27] and

ε0(k) = cos kx + cos ky + cos kz , (67a)

ε1(k) =
1
2

(cos kx + cos ky − 2 coskz), (67b)

ε2(k) = −
√

3
2

(cos kx − cos ky). (67c)

The condition δE−(k)/δvk = 0 then yields a transcenden-
tal equation for vk, which may be written as

vk = g
1 + 2j exp(−v2

k)Fk

1 + (tk/~Ω)Ek
, (68a)

where Ek ≡ E−(k) and

Fk = exp(−v2
k)− (2v2

k)−1 sinh v2
k. (68b)

To assess the range of validity of our variational approach,
we shall now first investigate the limiting cases of weak
and strong coupling.
(i) weak coupling : g � 1

In this coupling range, equations (68) possess the
solution

vk =
(1 + j)g
1 + γEk

+O(g2), (69a)

where the adiabaticity parameter

γ = t/~Ω. (69b)

If this is inserted into the expression for E−(k), equa-
tion (65), the result is

E−(k)/~Ω = −γEk − g2 1 + 2j
1 + γEk

, (70)

where terms of O(j2) have been excluded because of the
expansion (51). To compare our formula with exact ana-
lytical results for the Holstein polaron, we set j = 0 and
restrict ourselves to one dimension. At the Γ point, equa-
tion (70) then reduces to

E1D
− (0)/~Ω = −γ − g2

1 + γ
· (71a)

This may now be compared with the result of weak-
coupling perturbation theory [28], which is valid for all γ:

E1D
− (0)/~Ω = −γ − g2

√
1 + 2γ

· (71b)

While these two expressions agree for γ � 1, they start
to diverge for larger γ, and our formula (71a) gradually

ceases to be a reasonable upper bound [26]. For the pure
JT case (γ = 0, j = 1/2), equation (70) reduces to

E−(k)/~Ω = −2g2, (72)

which agrees with the result of perturbation theory [21].
(ii) strong coupling : g � 1

In this case, equations (68) are solved by the expression

vk = g − j

2g
+O(g−2), (73)

which, after substitution into equation (65), leads to

E−(k)/~Ω = −g2 − j. (74a)

For the Holstein polaron, strong-coupling perturbation
theory [28] yields the result

E−(k)/~Ω = −g2 −
(
γ

2g

)2

, (74b)

which agrees with our formula (74a) (for j = 0) in the
nonadiabatic limit γ � 1. In the pure JT case (j = 1/2),
equation (74a) agrees with the strong-coupling expression
in reference [21].

This concludes our discussion of the weak and strong
coupling limits. Summarizing we may state that our vari-
ational treatment seems to work reasonably well in the
nonadiabatic regime γ � 1, but becomes less reliable for
larger γ [26]. The nonadiabatic regime might be relevant
to the manganites. For, in the doping region considered
in this work, the t2g core spins form an antiferromagnetic
(G-type) spin background, leading to a strong suppression
of hopping because of the double-exchange mechanism [9].

Important characteristics of a polaron are its disper-
sion relation and effective mass. Subsequently these prop-
erties will be examined for both the quasi-Holstein model
(j = 0) and the E

⊗
e JT case (j = 1/2) by means of a

numerical evaluation of equations (68). The result of such
a calculation for g = 1.5 and γ = 0.5 is shown in Fig-
ure 1, where the polaron dispersion relations E−(k) for
j = 0 and j = 1/2 are depicted along a closed path of
the cubic Brillouin zone (BZ). For comparison, the lower
tight binding eg band (g = 0) is also shown in Figure 1.
Although the polaron bands are shifted to lower energies
and have a smaller width in comparison with the eg band,
as expected, the shapes of all three bands are very similar.
In particular, all extrema of the dispersion curves are lo-
cated at the same positions. Other prominent features of
the bands are the extended flat minima between Γ and X
and the absolute maxima at the R point.

The polaron effective mass m∗ is defined by the
relation

1
m∗

=
1
~2

(
∂2E−(k)
∂k2

)
k=0

,

where k is the wave-vector component along some sym-
metry line of the BZ. Using equation (65) we obtain the
simple result

m0/m
∗ = exp(−v2

k=0), (75)
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Fig. 1. Polaron dispersion curves E−(k)/~Ω, equation (65),
for j = 0 (Holstein polaron) and j = 1/2 (E

N
e JT polaron).

The lower tight binding eg band (g = 0) is also shown for
comparison. Symmetry points of the BZ are designated as in
reference [27].

Fig. 2. Inverse effective masses of the Holstein polaron (dashed
line) and the E

N
e JT polaron (solid line) as functions of the

coupling strength g.

where

1
m0

= − t

~2

(
∂2Ek

∂k2

)
k=0

denotes the inverse effective mass of the lower tight bind-
ing eg band. We mention that in our derivation of equa-
tion (75) the k dependence of vk has been properly taken
into account, the simplicity of the result being due to a
cancellation of all terms involving ∂2vk/∂k

2.
In Figure 2 the mass ratio m0/m

∗ is plotted as a func-
tion of the coupling strength g. Although both polaron

masses behave similarly, there is an unexpected crossover
where, for increasing g, the Holstein polaron starts to ac-
quire a somewhat larger effective mass than the JT po-
laron. The effect is, however, not as dramatic as claimed
by Takada [29]. For, in the strong-coupling limit, the po-
laron effective mass ratio m∗JTP/m

∗
HP tends to the finite

limit exp(−j) ≈ 0.607 for j = 1/2, as follows from equa-
tions (73) and (75). The results presented in Figure 2
are in remarkably good agreement with recent quantum
Monte Carlo data [14], thus confirming our expectation
that the proposed variational approach, restricted to the
nonadiabatic regime, gives a fair account of polaronic
properties over the whole coupling range.

7 Summary

In this work a detailed account has been given of the an-
alytic properties of the E

⊗
e JT polaron, consisting of

a mobile eg electron linearly coupled to the local eg nor-
mal vibrations of a periodic array of octahedral complexes.
The linear JT coupling implies the existence of two oper-
ators, the angular momentum J and the parity K, which
commute with the JT part and are responsible for the
twofold degeneracy of all JT eigenvalues. This degener-
acy is lifted by the anisotropic hopping term, which does
not commute with J and K. The most interesting fea-
ture of our study is, however, the appearance of a close
relationship between the JT problem and the Holstein
model. Although such a connection has already been sus-
pected to exist in the simpler E

⊗
b JT polaron [11], it

has never been explicitly demonstrated. This connection
only emerges in a particular representation of the orig-
inal problem, in which the Hamiltonian acquires an ex-
plicit dependence on the half-integral angular momentum
quantum number j and quite naturally decomposes into a
Holstein term and a residual JT interaction. While the
ground state of the JT polaron belongs to the sector
j = 1/2, the Holstein polaron is formally obtained for
the unphysical value j = 0. This is the optimal form of
the Hamiltonian, which can be achieved by purely ana-
lytic means, allowing the JT and the Holstein polaron to
be treated in a unified framework.

The Hamiltonian is then subjected to a variational
treatment, yielding approximate ground-state energies
and eigenvectors for both types of polarons. Although
the ground-state eigenvector is explicitly given by equa-
tions (62), its application to the calculation of physi-
cal properties is relegated to future work. Here we have
restricted ourselves to the polaron dispersion relations
and effective masses. As expected, the polaron bands are
shifted to lower energies and have a smaller width in com-
parison with the bare eg band (see Fig. 1), but the shapes
of all three bands are very similar. The dependence of the
effective masses on the coupling strength g is also simi-
lar for both polarons (see Fig. 2). There is, however, an
unexpected crossover where the Holstein polaron starts
to acquire a somewhat bigger mass than the JT polaron
with increasing g. These results are in remarkably good
agreement with recent quantum Monte Carlo data [14].
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This seems to indicate that our variational approach, re-
stricted to the nonadiabatic regime for formal reasons, is
fairly accurate. The nonadiabatic regime might be rele-
vant to the manganites, for in the doping region consid-
ered in this work the core spins form an antiferromagnetic
(G-type) spin background, leading to a strong suppression
of hopping because of the double-exchange mechanism [9].

A more realistic model would have to include, at
least, the intersite coupling of the normal vibrations.
This coupling is expected to contribute to the split-
ting of the degenerate JT ground state and to turn the
Einstein phonons of the present work into optical phonons.
Whether these coupling terms will give rise to additional
and unexpected effects, remains to be seen and will be
investigated in future work.

Appendix A: Direct proof of equivalence

In Section 5 the equivalence of the operatorsA and Aj has
been proven in terms of their algebraic properties. Here
we intend to put forward a more direct proof by showing
that the operators possess identical matrix elements, pro-
vided the states involved are related to each other by the
mapping prescription (39). We start by defining the basis
vectors

|iκ;m+ 2ni,m〉 ≡ d †iκ|m+ 2ni,m〉
∏
l6=i
|0l, 0l〉,

(A1a)

|iκ;m+ 2ni + 1,m+ 1〉 ≡ d †iκ|m+ 2ni + 1,m+ 1〉
×
∏
l6=i
|0l, 0l〉, (A1b)

where the notation is the same as in equations (28) and κ
is fixed by equation (29c). The vectors (A1a) and (A1b)
are then eigenstates of the angular momentum operator
J to the same eigenvalue j = m+ 1/2 and belong to the
subspaces U+

j and U−j , respectively, according to our def-
initions introduced at the end of Section 4. Given these
basis states, the nonvanishing matrix elements of the op-
erator A, equation (30a), are readily evaluated by means
of the easily proven relations

aix|m+ 2ni,m〉 =
√
m+ ni |m+ 2ni − 1,m− 1〉,

(A2a)
aiz |m+ 2ni,m〉 =

√
ni |m+ 2ni − 1,m+ 1〉, (A2b)

Πκ|m+ 2ni,m〉 = 0, Π−κ|m+ 2ni,m〉 = |m+ 2ni,m〉.
(A2c)

With the help of equations (A2) we then find the
expressions

A|iκ;m+2ni,m〉 =
√

2ni |iκ;m+2ni−1,m+1〉,
A|iκ;m+2ni+1,m+1〉 =

√
2j+2ni+1 |iκ;m+2ni,m〉,

and, hence, the only nonvanishing matrix elements of the
operator A read:

〈iκ;m+2ni−1,m+1|A|iκ;m+2ni,m〉=
√

2ni, (A3a)

〈iκ;m+2ni,m|A|iκ;m+2ni+1,m+1〉=
√

2j+2ni+1.
(A3b)

Our assertion is that the matrix elements of the oper-
ator Aj , defined by equations (40), are the same as those
on the right side of equations (A3), provided the states
are chosen as prescribed by equation (39). To prove our
claim, we first introduce the new basis vectors

|iκ; 2ni) ≡ c†iκ
(b †i )2ni√

(2ni)!
|0), (A4a)

|iκ; 2ni + 1) ≡ c†iκ
(b †i )2ni+1√
(2ni + 1)!

|0), (A4b)

where we have adopted the notation of equations (37).
Here, in contrast to the vectors (A1), the quantum num-
ber κ needs no longer to be fixed, but may be arbitrarily
set equal to 1 or−1. Since, by definition, the vectors (A4a)
and (A4b) are elements of the subspaces V+

j and V−j ,
respectively, the mapping prescription (39) requires the
following one-to-one correspondence to exist between the
vectors (A1) and (A4):

|iκ;m+ 2ni,m〉 ↔ |iκ; 2ni), (A5a)
|iκ;m+ 2ni + 1,m+ 1〉 ↔ |iκ; 2ni + 1), (A5b)
|iκ;m+ 2ni − 1,m+ 1〉 ↔ |iκ; 2ni − 1). (A5c)

By means of these relations the matrix elements (A3) are
then mapped onto the following expressions

(iκ; 2ni − 1|Aj |iκ; 2ni) =
√

2ni, (A6a)

(iκ; 2ni|Aj |iκ; 2ni + 1) =
√

2j + 2ni + 1, (A6b)

whose validity is explicitly verified with the help of equa-
tions (A4) and (40). This proves the equivalence of the op-
erators A and Aj , as far as the basis states are concerned.
Owing to the completeness of these states, however, rela-
tions (A3) and (A6) suffice to extend the proof to arbitrary
vectors of the spaces Uj and Vj , provided these vectors are
related to each other by equation (39). This completes our
direct proof of the equivalence of the operators A and Aj .
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